Day 2 Analysis

Complete the following set of analysis exercises and submit by 11:59 pm the day before you are due back in lab.

  1. For the 662 keV peak of Cs-137 (with no absorber present), show the full method of count rate estimation using the in-software tools. Include the following:
    • an annotated figure (screenshot or replotted data) showing the identification of the region of interest you chose,
    • estimation of the number of counts in the background and the net counts in the peak (above background) within that region of interest, and
    • determination of the net count rate and uncertainty in the net count rate (with details of the calculations).

  2. For the same 662 keV peak of Cs-137 (with no absorber present), show the full method of count rate estimation using a least-squares fit to a Gaussian plus background. Include the following:
    • show the mathematical model used in the fit;
    • the plot showing showing the data used in the fit with the full fit function overlayed on top;
    • all fit parameters (with uncertainties) and the reduced chi-square value for the fit.

  3. Show a plot of the count rate (either rate $R$ or normalized rate $R/R_0$) of 662 keV gammas as a function of aluminum absorber thickness, with an exponential fit to the data. Include the following:
    • show the mathematical model used as the fit function;
    • the plot showing showing the data (and uncertainties) used in the fit with the full fit function overlayed on top;
    • all fit parameters (with uncertainties) and the reduced chi-square value for the fit;
    • a quantitative discussion of the reduced chi-square value;
    • the final value for the linear coefficient at this energy, $\lambda(E=662~\textrm{keV})$, with uncertainty; and
    • a quantitative discussion of the agreement between your experimental value and the literature value (available below).